

Una curiosa relación entre potencias, raíces y logaritmos

Durante una clase, una estudiante me hizo notar que en una ocasión dije: 'la raíz es la operación inversa de la potencia.' Y en otra oportunidad afirmé: 'el logaritmo es la operación inversa a la potencia'. Entonces, me preguntó: ¿Cómo pueden ser ciertas estas dos afirmaciones?

¡Esa es una buena pregunta!

Le contesté que, la potencia tiene dos operaciones inversas, cada una respondiendo a una pregunta diferente.

La raíz es la operación inversa a la potencia, cuando se desconoce la base. Por su parte, el logaritmo es la operación inversa a la potencia, cuando se desconoce el exponente. ¡Aquí va la explicación!

Figura 1. Relación entre potencia, raíz y logaritmo. Potencia (p), base (b) y exponente (n).

Si necesitas más información sobre estos temas, te invito a leer nuestras publicaciones:

https://leer-matematicas.online/potenciacion/

https://leer-matematicas.online/radicacion/

https://leer-matematicas.online/logaritmos/

https://leer-matematicas.online/como-resolver-logaritmos/

Operaciones inversas: Potencias y raíces

Recuerda que una potencia es como multiplicar un número por sí mismo varias veces. Por ejemplo, 2^3 significa $2 \times 2 \times 2 = 8$. Aquí, 2 es la base y 3 es el exponente y 8 es la potencia. La raíz es la operación inversa cuando necesitas conocer la base. Por tanto, $2 = \sqrt[3]{8}$.

Por ejemplo, supongamos que quieres saber, qué número (x) elevado al cuadrado da 25 ($x^2 = 25$). Entonces, $x = \sqrt{25} = 5$. En resumen, si tienes $b^n = p$, usas $b = \sqrt[n]{p}$ Para hallar la base b (figura 1).

Potencias y logaritmos

Ahora, cambiemos el enfoque. Si necesitas hallar el exponente, usas los logaritmos, que son la otra operación inversa de las potencias. Volviendo a $2^3 = 8$, el exponente (3) se halla con $log_2(8) = 3$.

Por ejemplo, imagina que tienes la potencia $10^x = 100$. Para calcular x, usas log(100) = 2 (logaritmo en base 10 de 100), porque $10^2 = 100$. ¡Hallaste el exponente 2!

Si tienes $2^x = 32$, ¿Cuál es el valor del exponente x? Solucionas con $log_2(32) = 5$, porque $2^5 = 32$. En conclusión, si tienes $b^n = p$. usas $n = log_b(p)$ para encontrar el exponente n (ver figura 1).

Taller de lectura: ¡a repasar lo aprendido!

(Para las preguntas 1, 2 y 3) Imagina que elevas un número misterioso al cuadrado y obtienes 169.

- La expresión que representa el enunciado es:
 - a. $x^2 = 169$
 - b. $x = 169 \div 2$
 - c. 2x = 169
- 2. La operación para hallar ese número es:
 - a. Log₂(169)
 - b. $\sqrt{169}$
 - c. 169×2
- 3. El número misterioso del ejercicio anterior es:
 - a. 17
 - b. 13
 - c. 2

(Usa este enunciado para responder las preguntas 4, 5 y 6) María dice: 'Si tomo el número 5 y lo elevo a cierto exponente, obtengo 125'.

- 4. La expresión que representa la afirmación de María es:
 - a. $125 \div 5$
 - b. $5^{x} = 125$
 - c. √125
- 5. La expresión que te permite hallar el exponente es:
 - $a.5 \times 3$
 - b. $\sqrt{125}$
 - c. Log₅(125)

- 6. El valor del exponente que se busca es:
 - a. 5
 - b. 3
 - c. 2
- 7. Si te dan una potencia con un exponente desconocido (x), la operación para calcularlo es un logaritmo porque:
 - a. Es la operación inversa de la multiplicación.
 - b. El logaritmo neperiano es el mismo logaritmo natural.
 - c. El logaritmo es la operación inversa de la potencia cuando se quiere obtener un exponente.

(Para las preguntas 8 y 9) En una carrera de observación, aparece un mensaje secreto: A partir de aquí, debes avanzar x kilómetros hacia al norte. Pero x, hace parte de la ecuación $x^3 = 216$.

- 8. La operación inversa a la potencia, que es necesaria para obtener el valor de la base x es:
 - a. Log₃(216)
 - b. $\sqrt[3]{216}$
 - c. 216×3
- La distancia en kilómetros que los participantes deben avanzar hacia el norte es:
 - a. 4
 - b. 5
 - c. 6